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MULTISPECTRAL DATA FOR MAPPING SOIL TEXTURE:
POSSIBILITIES AND LIMITATIONS

E. M. Barnes, M. G. Baker

ABSTRACT. Soil maps derived from random or grid-based sampling schemes are often an important part of precision crop
management. Sampling and soil analysis to derive such maps require a large investment of both time and money. Aerial
photos have been used as a soil mapping aid for years. Studies have shown such an approach can be useful for defining
management units in precision farming, but these studies are often limited to a single field, not an entire farming
operation. In this study, multispectral airborne [green, red, near infrared (NIR), and thermal] and satellite (SPOT and
Landsat TM) data were used to derive soil textural class maps for 350 ha of a 770 ha research and demonstration farm in
Maricopa, Arizona. These maps were compared to soil textural analysis results from samples in the top 30 cm of the soil
profile at an approximate grid spacing of 120 m. Differences in tillage, residue, soil moisture, etc. between fields limited
the accuracy of spectral classification procedures when applied across the entire study area. However, using spectral
classification procedures on a field-by-field basis, it was possible to map areas of soil textural class with reasonable
accuracy. These results are specific to the study area and may not apply at other locations due to the numerous factors
that can contribute to a soil’s spectral response. Classification procedures were also used with vegetation present over the
study area later in the season. Resulting vegetation classes may be helpful in deciding if soil classes impact crop
development enough to warrant different management practices.

Keywords. Remote sensing, Precision farming, Soil mapping.

ite-specific or precision crop management had its

earliest beginnings in efforts to account for within-

field soil type variations. First applications for

mapping differences in soil properties relied on
grid-based sampling and statistical interpolation between
points (Nielsen et al., 1995). While this technique is still
used, the expense of collecting and analyzing the number
of samples can be significant and in some cases
economically prohibitive (Ferguson et al., 1996).
Alternatives to direct soil sampling that have been
investigated include analysis of previous year’s yield maps
(Cambardella et al., 1996), electromagnetic induction
(Jaynes, 1996), examination of topographic information
(Bell et al., 1995), and use of remotely sensed imagery
(Thompson and Robert, 1995). The use of remotely sensed
data has met with varying degrees of success for mapping
different soil properties. Strong correlation between soil
properties such as organic matter content or textural
distribution and spectral data have been found in a
laboratory setting (Dalal and Henry, 1986) or for a single
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field (Milfred and Kiefer, 1976). However, few studies
have examined the application of these techniques to an
entire farm. The objective of this study was to generate
maps of soil texture over 565 ha of a research farm in
Maricopa, Arizona, from multispectral images acquired by
aircraft and satellite platforms. These image-based maps
were compared to a soil map generated by kriging
procedures. Factors limiting the utilization of remotely
sensed technology for soil mapping were also evaluated.

PREVIOUS STUDIES

Aerial imagery has been used to aid in soil mapping for
over 60 years (Bushnell, 1932), and with advances in
digital imaging, such information can now be directly
input to a geographical information system (GIS). In
laboratory studies, NIR reflectance has successfully
quantified soil properties such as moisture, organic
carbon, and total nitrogen (Dalal and Henry, 1986; Shonk
et al., 1991). Similar relationships have also been found at
the field level. For example, Milfred and Kiefer (1976)
found soil patterns over a 12 ha field were most obvious
three days after a rainfall in color photographs. Color
infrared film was also used in the study, but no significant
difference was found between the two methods in the
ability to distinguish soil patterns. The same spatial
patterns were also seen in a corn crop that was later
planted in the field. The patterns were attributed to
topography (as it affected the distribution of rainfall
infiltration), and variations in thickness of silty material
over a sand and gravel substratum. Thompson and Robert
(1995) found aerial imagery allowed for fewer soil
samples than interpolation techniques such as kriging or
distance-weighted interpolation. Pocknee et al. (1996)
provide an example where an aerial photograph of a bare
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field was used to map soil properties by a “directed soil
sampling” method. The method worked well for mapping
soil phosphorus, but performed poorly for soil pH.
Estimation of soil particle size has been proposed using a
combination of visible, NIR, and thermal infrared data
(Salisbury and D’ Aria, 1992).

Aerial imagery has also been a useful tool to designate
management zones by examining spatial patterns of a
vegetation index, which can be correlated with variations
in crop biomass (Yang and Anderson, 1996). Yang and
Anderson (1996) utilized green, red, and NIR images of
vegetated fields to classify areas of a field to be managed
differently with respect to the agricultural inputs they
received. This was accomplished by first performing
unsupervised classification on multispectral data and then
taking soil and plant samples in the resulting classes to
determine the proper management approaches for each
class. Airborne data have also found applications in
mapping soil salinity (Wiegand et al., 1994; Verma et al.,
1994), and plant nitrogen status (Bausch et al., 1996;
Blackmer and White, 1996). An overview of the
application of remotely sensed data to other precision crop
management practices is provided by Moran et al. (1997b).

MATERIALS AND METHODS

This research was conducted at the University of
Arizona’s Maricopa Agricultural Center (MAC). MAC is a
770 ha research and demonstration farm located
approximately 37 km south of Phoenix, Arizona. The
analysis was limited to the 565 ha demonstration portion of
the farm as fields are larger and farming practices were
more consistent than on the research portion. Additionally,
crops were present in some fields during the time imagery
was available. Therefore, the image-based analysis was
further limited to 350 ha where the fields were fallow or
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recently tilled. This 350 ha area is represented by the fields
with identification numbers in figure la. All of the soil
sampling locations were used in the kriging procedures.

SoiL SAMPLES

Soil data used in this study were collected by Post et al.
(1988) from May 1984 until January 1987. Characteristics
of the three primary NRCS soil map units (USDA-SCS,
1991) that cover the farm are listed in table 1, with their
spatial extent illustrated on figure la. Five hundred fifty-
five Ap surface horizon (0 to 30 cm depth) soil samples
were collected on a grid design system across the
demonstration portion of the farm (typical grid spacing was
120 m). The sampling locations are shown on figure la. Of
the 555 samples, 303 were in the fields used to evaluate the
image-based procedures. For each of these samples,
textural fractions of sand, silt and clay were determined
and the location recorded in a UTM coordinate system.
Sampling locations were determined to the nearest meter
based on relative distance from field boundaries which

Table 1. Properties of the three soil map units in the study area
from Post et al. (1988)

Bulk  Organic CEC
Soil Textural Depth Sand Clay Density Matter (meq/
Series* Classt (cm) (%) (%) (gem3) (%) 100 g)
MO SL 0-30 65-75 10-15 14-16 04-06 8-10
MO SL 30-100 65-75 10-15 14-16 0.1-02 79
CG SCL  0-30 45-55 22-27 1.45-1.55 08-12 13-16
CcG SCL 30-100 45-55 22-27 1.45-1.55 0.2-04 12-15
TR CL 0-30 2545 27-40 1.40-1.55 1.2-1.5 24-27
TR SCL 30-100 45-55 22-27 140-1.55 0.6-0.8 15-18

* MO is Mohall (fine-loamy, mixed, hyperthermic Typic Haplargid);
CG is Casa Grande (fine-loamy, mixed, hyperthermic Typic
Natrargids); TR is Trix (fine-loamy, mixed, hyperthermic Typic
Torrifluvents).

t SLis sandy loam, SCL is sandy clay loam, and CL is clay loam.

dSandy Loam
B8 Sandy Clay
Loam

Il Clay Loam

(b) ©

Figure 1-(a) Soil sampling locations, field numbers and NRCS soil mapping units, (b) percent sand map estimated from kriging, and (c) soil
textural map determined from the percent sand, silt, and clay kriged maps. Field borders and numbers are shown only for the fields used to

evaluate the image-based classification procedures.
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were located using surveying techniques as described by
Regan et al. (1989). Semivariograms were generated for
each textural fraction for all of the 555 sampling locations
to separation distances of 2000 m. Five different models
(spherical, circular, exponential, Gaussian, and linear) were
evaluated to determine which best represented the data
using the grid module of Arc/Info version 7.1 (ESRI, 1997)
by examining the resulting semivariograms. McBratney
and Webster (1986) provide a discussion of the models and
parameter estimation techniques. Once the appropriate
model was selected, the kriging function in ArcGrid was
used to spatially interpolate the data to a 2 m grid.
Individual grids were generated for the sand, silt, and clay
percentages. Each grid cell was then assigned a USDA
textural class of sandy loam, sandy clay loam or clay loam
based on the sand, silt, and clay percentages interpolated
for that cell.

MULTISPECTRAL DATA SOURCES AND IMAGE CORRECTION
Airborne, SPOT High Resolution Visible (HRV), and
Landsat Thematic Mapper (TM) were considered in this
study. Characteristics of these three sensor systems and
acquisition dates are summarized in table 2. The satellite
images selected were acquired the last year soil data were
collected (1987) and at the time summer seedbed
preparation was completed. However, 1994 was the only
year an extensive set of airborne imagery was available for
the site. There were no major land leveling operations or
changes in field geometry during the 10 years between the
beginning of the soil sample collection and the acquisition
of the airborne imagery; therefore, it is expected that the
soil samples accurately portray the variations in soil texture
at the time the airborne imagery was collected. The images
were geometrically registered to the GIS coverage
containing the soil sampling locations (UTM projection,
NAD 27 datum). Ground control points were selected until
the root-mean-square error of the first order registration
model was less than 1 m. Both satellite images easily
encompassed the entire study area in a single image frame.
The airborne image was composed from portions of

Table 2. Sensor characteristics

Frame
Size
(km)

~1x1

Spectral
Bands

(hm)
: 0.545-0.555

Spatial
Resolution

Acquisition
Date

12 April 1994}

Spectral
Regiont

Green

Sensor*

Airborne 2m

02 May 1994
07 July 1994

SPOTHRV 20m 09 April 1989

Landsat TM 30m§ 13 April 1989

7:

1
2
3
4
1
2:
3:
1
2
3
4
5
6

0.645-0.655
0.840-0.860
8.0-12.0
0.500-0.590
0.610-0.680
0.790-0.890
0.450-0.520
0.520-0.600
0.630-0.690
0.760-0.900
. 1.55-1.75

. 10.4-12.5
2.08-2.35

Red
NIR
Thermal
Green
Red
NIR
Blue
Green
Red
NIR
SWIR
Thermal
SWIR

60 x 60

185 x 185

* The airborne system was composed of three optical video cameras and a
thermal scanner provided by staff at the Dept. of Biological and Irrigation
Engineering at Utah State University. HRV is high-resolution-visible, and TM

is “Thematic Mapper”.

-~k

NIR is near infrared and SWIR refers to shortwave infrared.
For the airborne data the first flight date was used to represent fields 19 to 23,

fields 31, 33 to 37 on the second date; fields 27-30 for the third date.
§ Thermal (band 6) is at 120 m spatial resolution.
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56 individual video frames, forming a single mosaic of the
study area.

Flights of the entire farm occurred on 15 separate dates
from April to September. Three different image dates
(table 2) were used to build a single mosaic image of the
farm that contained only bare soil. The visible and NIR
bands were calibrated to units of reflectance utilizing
canvas tarps of known reflectance. Ground-based
radiometer measurements of a bare field, concurrent with
overflights, were also used in the calibration procedure (see
Moran, Clarke et al., 1997a, for details of the calibration
procedure for airborne data). The data set included imagery
from a thermal scanner that was initially considered in the
evaluation. In an attempt to normalize the thermal data for
differences in air temperature between flight dates, the air
temperature was subtracted from the surface temperature.
Details on the airborne data set are given by Moran et al.
(1996).

The first soil mosaic from the airborne data showed the
reflectance of a soil in the same field was different on
different dates. These differences were probably a
combination of actual changes in the soil surface
conditions between flights (tillage or rain compaction of
the soil surface, soil moisture, etc.), orientation of the
aircraft (pitch or yaw creating different view angles),
differences in solar zenith angle at the time of acquisition,
and possible errors in the calibration procedures. There
were also noticeable differences between coincident image
frames taken on the same date that may have been due to
the pitch or yaw of the aircraft. To minimize these
differences, one image date was taken as the standard, and
then multiplication factors were applied to each band of the
other frames. These factors (Factor; ;) were determined by
the following equation;

Kb M)

Ristandp

Factor ip =

where R; }, is the reflectance on day i in band b, and Rgi;ng 1,
is the reflectance from the image date selected as the
standard. Reflectance values for the numerator of equation
1 were selected in the image frame adjacent to a frame
serving as the standard. As the satellite data sets were
single acquisitions, no radiometric calibration was
performed.

STATISTICAL AND CLASSIFICATION PROCEDURES

The classification process was conducted across two
different spatial scales: classification using data for the all
of the fields identified by number in figure 1a (farm-level),
and classification on a field-by-field basis (field-level).
The airborne imagery was used to first identify
classification and filtering procedures that provided the
best accuracy. Once identified, the same procedures were
applied to the SPOT and Landsat images. From all images,
single pixels corresponding to the soil sample locations
were extracted and imported to a spreadsheet so the
correlation between the individual spectral bands and soil
textural percentages could be evaluated. Correlation
coefficients were calculated for the entire data set and on a
field-by-field basis.
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Unsupervised classification was conducted using the
Iterative Self-Organizing Data Analysis Techniques
(ISODATA) (Tou and Gonzalez, 1974) using the Imagine
8.3 image processing package (ERDAS, 1997). All bands
for each sensor system were used with the exception of the
thermal bands in the airborne and Landsat data due to
results obtained during the correlation analysis. ISODATA
uses iteration to define “clusters” of data in multi-
dimensional spectral space. A maximum-likelihood
decision rule was used to determine the division of the
classes. In some areas, there were isolated groups of pixels
that classified differently from those in the surrounding
area. These differences may have been induced by small
patches of residue or in some cases represented areas that
were on the edge of a spectral class. To remove these
inclusions, first a convolution filter was applied that used a
majority rule with a 7 X 7 window. Next, an 8-pixel
clumping algorithm was executed where pixels with the
same class were “connected”. Based on the results of the
clumping algorithm, areas spatially connected with less
than 240 pixels were eliminated. For the farm-level
classification, the resulting classes were then assigned to a
soil class of sandy loam (SL), sandy clay loam (SCL), or
clay loam (CL) based on the spectral classes present in
fields 27 and 33 as these fields contained a wide range of
soil conditions. These sites, plus three others, were also
used in the farm level evaluation to derive soil texture
maps using supervised classification methods. Spectral
patterns corresponding to the soil textural classes were
defined at the five “training” sites and then the rest of the
image was classified to soil texture based how close the
spectral pattern at a particular location matches the one
predefined. Supervised classification was attempted in this
study, as the soil data were available at the time of analysis.
In some cases, supervised classification may be appropriate
if soil samples for an area of a farm are already available.
However, unsupervised classification can be used to
identify areas of a field that have similar spectral
properties. Soil samples can then be obtained for the
spectral class to identify the soil properties associated with
that class. Thus, this farm-level classification was the only
occasion supervised classification was attempted, and
unless otherwise specified, “classification” refers to the
unsupervised classification procedures. For the field-level
classification, soil data within each field were used to
assign a spectral class to a soil textural class. A total of 60
soil samples, typically a minimum of three per field, were
needed in order to assign soil classes for the field level
classification.

In addition to applying the above procedures to
generate soil maps, the same unsupervised classification
methods were applied to fields 33 through 37 with a cotton
crop present using the airborne data acquired on 21 July
1994. Unsupervised classification of the image was
followed by application of the algorithms to eliminate
small, spatially discontinuous classes. The classes were
designated “high”, “medium”, and “low” vegetation using
ground-based visual estimation of the percent crop cover
in subsections of the field. The resulting vegetation classes
were then compared to the soil classes previously defined
for these fields.

The accuracy of each classification was assessed by the
following formula:

734

pC = TCC x 100% )
TOC

where PC represents the percentage of soil sample points
correctly classified as sandy loam, sandy clay loam, or clay
loam, and TCC is the total number of points correctly
classified and TOC is the total number of observed points.

EVALUATION OF DIFFERENCES IN SOIL SURFACE
CONDITION ON REFLECTANCE

Hand-held radiometer (CropScan MSR) measurements
were taken over an area with the same soil type containing
different surface conditions. Measurements were all taken
within a 15 min period and the locations were within a
15-m-diameter area. The soil surface conditions considered
were:

1. Dry smooth soil surface.

2. Wet, smooth soil surface (2 cm of water applied

30 min prior to measurement).

3. Dry soil, smooth, but 5 cm high ridges (10/m)

present.

4. Dry soil, cultivated, unplanted bed (approximately

20 cm from bed top to furrow).

5. Wet, cultivated, unplanted bed (2 cm of water

applied 30 min prior to measurement).

6. Partially wet, cultivated, unplanted bed (1 cm of

water applied 1 h prior to measurement).

7. Dry soil bed, with 5% of the surface covered by crop

residue.

8. Dry, flat surface with soil clods up to 8 cm in

diameter.

The radiometer consisted of eight silicon detectors
filtered to different reflective bands, and was held 1.5 m
above the soil surface (0.75-m-diameter area of influence).
An infrared thermometer was also side-mounted on the
radiometer. Five of the reflective bands were relatively
narrow (+ ~0.20 um of central wavelength): blue (0.460
pum), green (0.559 um), red (0.661 pm), red-edge (0.710
pm), and NIR (0.810 pm). The remaining three bands were
similar to bands 3, 4, and 5 of the Landsat TM sensor
(table 2) with central wavelengths of 0.660 um, 0.830 pwm,
and 1.65 um, respectively.

RESULTS AND DISCUSSION
KRIGING RESULTS

Table 3 shows the semivariogram model parameters for
sand, silt, and clay textural percentages, and the RSME
between the observed and predicted semivariance from the
models evaluated. Figure 2 is sample semivariograms for
the observed and predicted clay textural data. The
exponential model consistently provided the lowest RSME
for each of the textural classes. Visual assessment of the
semivariograms also indicated that the exponential model
provided the best estimate of semivariance across the entire
range of separation distances. The circular model predicted
a much higher range than the other models, resulting in a
continuing increase in predicted semivariance across the
separation distances considered (table 3 and fig. 2b). The
Gaussian model tended to underestimated semivariance at
separation distances greater than 1200 m. There were not
large differences in predicted semivariance between the
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Table 3. Parameters for the semivariance models determined
for the sand, silt, and clay textural percentages

Model*
Parameter Spherical Circular Exponential Gaussian  Linear
Sand (%)
o 31.2 43.0 104 499 39.8
¢ 200.0 219.0 245.6 170.9 190.3
aorr 1679.6 2002.0 774.3 699.5 1308.7
RSME{t 29.4 29.9 28.1 33.6 30.9
Silt (%)
Co 109 15.7 4.7 11.2 123
c 41.3 44.6 50.5 37.3 39.1
aorr 1420.4 2002.0 575.0 533.7 1049.5
RSME 72 7.5 6.9 8.2 74
Clay (%)
Co 6.4 10.1 0.0 11.7 8.7
¢ 63.6 70.6 71.3 54.4 60.4
aorr 1611.8 2002.0 735.1 644.1 12254
RSME 9.6 9.8 8.9 11.0 10.2
* The models considered for semivariance (Y) were:
Spherical:
Yyh)=cy+c;h>a
y(@=0
3h h)?
y(h)=co+c |3 -05{0) |;0<h <a
2a a
Circular;
Y(h)=co+c;h>a
Y©0)=0
v(h)=co+c l—lcos‘l(h—)+ b2 ;0<h <a
n a a2 1’ -
Exponential:
Y©0)=0
'Y(h): cotc [ 1 —exp (?)} ;h>0
Gaussian:
Y0)=0

2
v(h)=co+c { 1 —exp (h?” :h>0
r
Linear (with sill);
Yh)=cy+c;h>a
70)=0
- h}).
v(h)=co+c (;),0<h <a

where cg is the nugget, a is the range, r non-linear parameter
(interpreted as approximately a/3), and h is separation distance in m.

+ RMSE is root-mean-square error between observed and predicted
semivariance.

linear, spherical and exponential models. The exponential
model was used in the remainder of the kriging procedures
as it provided slightly better results than the other models
considered for all of the textural classes.

The kriged percent sand map using the exponential
model for semivariance is shown in figure 1b. Lighter
shades of gray correspond to a higher fraction of sand in
the soil surface layer. The reduction of the sand, silt and
clay kriged maps to a soil textural class map is represented
in figure 1c. The map in figure 1c is compared to image
derived maps in a following section of this article. The
predicted textural content at the points used in the kriging
were within 1 textural percent for all the textural classes.
There are distinct areas with high sand content apparent in
different areas of the farm (fig. 1b). These areas primarily
relate to drainage patterns in the area before it was
reclaimed for agricultural production. These areas are not
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Figure 2-Percent Clay Semivariograms from (a) observed data and
exponential model, and (b) exponential, spherical, circular, Gaussian,
and linear models.

always represented in the NRCS soil-mapping units, as the
mapping units are not intended to indicate soil variability at
fine spatial resolutions. Additionally, Post et al. (1988)
found that the Casa Grande series had a surface composed
primarily of sandy clay loam at this site, while the NRCS
assigns the mapping unit a texture of clay loam.

CORRELATION ANALYSIS

Correlation coefficients (r) between spectral bands of
each sensor and sand, silt and clay percentages are shown
in table 4, using data for the entire study area. With the
exception of the thermal bands, all coefficients are
significantly different than zero (p = 0.05). Also note that
r values tend to increase in magnitude with increasing
wavelength (excluding thermal data) for all sensor systems.
This implies that for the conditions in this study area,
Landsat data could have an advantage in distinguishing soil
classes due to its increase in spectral range over the
airborne and SPOT sensors.

While statistically significant, the correlation
coefficients indicate that typically less than 30% of the
variation in any given band can be attributed to differences
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Table 4. Correlation coefficients between the percent sand, silt or clay and
a specific spectral region of a given sensor system over
the entire area considered in the analysis

Spectral Region
Blue  Green Red NIR SWIR1 Thermal SWIR2
Landsat TM Spectral Band
1 2 3 4 5 6 7
ToSandBand 0.296% 0.380% 0.462* 0493* 0526% -0.053 0.572*
TogiBand —0.268% —0.346% -0.426* -0.466* -0.502*  0.001 -0.547*
ToClayBand —0-309% —0.394% -0473* —0.494* -0524*  0.094 -0.568*
SPOT Spectral Band
1 2 3

T%SandBand 0-400% 0.470*  0.497*
TgsitBand —0-328* —0.397* -0.428*
T%Clay,Band -0.450* —0.518* -0.539*

Airborne Sensor Spectral Band
1 2 3 4

TgSandBand 0-359% 0.414%  0.461* -0.064
ToilBand —0-340% —0.403* —0.450* 0.091
To,Clay,Band —0-359* -0.403* -0.449* 0.034

* Significantly different than 0 (p = 0.05).

in soil texture. Explanation for the remaining variation can
be partially found by viewing the gray scale images in the
NIR portion of the spectrum from the airborne, SPOT, and
Landsat sensors, in figure 3. For example, in figure 3a,
there are several differences in reflectance levels that are
not related to soil texture. The two dark rectangles in field
35 are due to irrigation in progress. There is also a distinct
“comer” in the upper center portion of the field that is an
artifact of mosaicing individual frames used to create the
image (also visible in field 20). Similar confounding
factors can be found in the SPOT and Landsat scenes. The
fact that fields 33 and 34 in both figures 3b and 3c appear
brighter than the fields above can be attributed to a longer
fallow period. The increased fallow period allows for more
rain compaction and smoothing of the surface, giving it a
brighter appearance when compared to a recently tilled
field. Other interfering factors include row direction (north
to south versus east to west) and seedbed preparation (flat
versus beds).

Figure 4 presents correlation coefficients between
spectral bands of each sensor on a field-by-field basis with
percent sand. Values outside the horizontal bars are

significantly different than zero (p = 0.05). In some cases,
low correlation values can be attributed to the fact there
was very little variation in soil texture in a particular field.
This is most likely the case when considering fields 19, 20
and 22, as all of these fields have consistently high sand
percentages (fig. 1b). For the Landsat and SPOT scenes,
field 30 was undergoing a tillage operation (fig. 3b,c), and
thus low correlation values in this field were obtained for
those sensors. For the airborne data, field 29 had varying
levels of residue and various tillage conditions; so again,
there was poor correlation between the spectral data and
soil texture. Despite these limitations, from both the farm
level (table 4) and field-by-field correlation analysis
(fig. 4), there is generally a statistically significant
relationship between the spectral data and soil texture. For
the most part, percent sand is positively correlated with
reflectance, while silt and clay generally show a negative
correlation. This is confirmed by viewing the NIR images
in figure 3, as areas with high sand (fig. 1b) tend to have a
brighter appearance. The soils at this site with higher sand
content tend to have lower organic matter content (table 1),
which may be responsible for the higher reflectance values
over the sandier areas. It is important to note that these
results are specific to this site, as many factors can
contribute to soil spectral properties.

The thermal data were not highly correlated with any of
the soil textures with exception of field 31 in the airborne
data (fig. 4). This correlation is likely spurious, as the east
side of the field, where there is a definite increase in sand
content, was recently tilled at the time the image was taken.
Disturbing the soil surface exposed moisture and cooler
soil, thus the negative correlation between sand content and
the thermal data. Further regression analysis was not
attempted, as Suliman and Post (1988), using the soil
samples from this data set, were only able to obtain
coefficient of determination values (r2) ranging from 0.4 to
0.5 between various combinations of TM spectral bands.
Their tests were carried out in a laboratory setting under
carefully controlled conditions.

CLASSIFICATION RESULTS

Based on the results from the previous section, a robust,
empirical relationship could not be established between the
image data and fractional content of sand, silt, or clay for

(a)

(b)

+31

+30

29

28
«27

©

Figure 3-Near infrared images of the study area from (a) airborne sensor, (b) HRV sensor on SPOT, and (c) TM sensor on Landsat. Numbers

are shown to identify individual fields referred to in the next.
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Figure 4-Correlation between sensor data and percent sand on a
field-by-field basis. Points outside of the horizontal bars are
significantly different than 0 (p = 0.05).

this site. Therefore, the next step was to evaluate the ability
to relate the images to soil textural class using spectral
classification techniques. Table 5 shows the overall
accuracy assessment for classification conducted at the
farm level. Correct classification of the soil textural classes
of 50% or less for all of the sensor systems is very poor.

VoL. 16(6): 731-741

Table 5. Accuracy assessment for the spectral classification
procedures executed across the entire study area

Sensor System
Classification Airborne SPOT Landsat
Technique Soil Types Correctly Classified (%)
Supervised 47 NA NA
Unsupervised 51 51 48

The same factors previously discussed that impacted the
correlation coefficients are probably responsible for poor
accuracy at the farm level. The use of supervised versus
unsupervised showed no clear advantage when considered
at the farm level. Supervised classification was not
considered at the field level, as there was often insufficient
data with which to construct training sites at that scale.

There was tremendous improvement in the accuracy
achieved when unsupervised classification was conducted
on a field-by-field level (table 6) compared to the farm
level results (table 5). Much of this accuracy increase
results from the relatively uniform surface in a single field
when compared to variations in soil surface conditions
across the entire farm. The slightly higher accuracy
achieved with the Landsat data could be attributed to its
increased spectral range.

The resulting soil maps from field-by-field classification
procedures of the airborne, SPOT, and Landsat data are
shown in figure 5. In order to compare differences in
spatial patterns, the three-class map generated from kriged
data (fig. 1c) was subtracted from the spectrally derived
maps. The results of the subtraction are shown in figure 6,
where shaded areas indicate disagreement. Based on this
figure, it was determined that the percent area classified
differently from the kriged map were 29%, 21%, and 20%
for the airborne, SPOT, and Landsat derived maps,
respectively. The major spatial groupings of soil type are
similar in each of the maps. Most differences occur in the
border area between classes. The map derived from the
airborne data (fig. 5a) showed there were several areas in
field 30 classified as sand that did not appear in the other
classifications nor were they indicated by observed data.
This field contained barley residue at the time of image

Table 6. Accuracy assessment of the spectral classification
procedures executed on a field-by-field basis

Sensor System

Field Airborne SPOT Landsat

Number Soil Types Correctly Classified (%)
27 73 91 82
28 58 92 92
29 60 80 87
30 52 76 90
31 77 80 90
33 93 93 87
34 75 81 100
35 100 79 93
36 100 100 100
37 86 86 100
19 100 100 100
20 100 100 100
21 67 80 80
22 94 94 94
23 81 94 88

Overall 81 88 92
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Figure 5-Soil maps derived from the field-level, unsupervised classification of the (a) airborne, (b) SPOT, and (c) Landsat data. Numbers are

shown to identify individual fields referred to in the text.
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Figure 6-Results of the subtraction of the soil maps derived from the (a) airborne, (b) SPOT, and (c) Landsat data (fig. 5) by the three-class
kriged soil map (fig. 1c). Shaded areas represent differences. Numbers are shown to identify individual fields referred to in the text.

acquisition, increasing the apparent brightness of the
surface. The soil surfaces with high sand content are also
brighter, thus the residue resulted in areas of the field being
incorrectly classified as sandy loam.

The middle of field 27 contains a sand lens that runs
north to south. Note that the apparent size of the sandy area
is largest in figure 5a (airborne derived) and smallest in
figure 5b (Landsat derived). Differences in class size are
probably related to the spatial resolution of the sensors,
with the airborne data having the highest and Landsat the
lowest resolution (table 2). This is one of the few cases
where the differences in spatial resolution appeared to have
any significant impact. A majority of the different soil
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textural classes considered have dimensions in excess of
200 m, well within the spatial resolution of all of the
sensors. If the variations in soil texture are more
heterogeneous and limited to smaller, continuous areas than
was present at this site, the differences in the spatial
resolution of the different sensor systems could impact soil
texture mapping accuracy.

Where the soil surface was uniform at the time of image
acquisition, it is speculated that patterns derived from the
images would be more accurate than those from derived
the interpolated data. Additionally, only 60 soil sample
locations were used to assign classes in the image-based
maps classified on a field-by-field basis, while
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303 locations were used for the kriged map. The number of
points needed for the image-based method could have been
substantially reduced if the soil surface was uniform across
the farm.

VEGETATION CLASSES

Before any soil zone can be termed a “management
zone”, it is important to consider if differences in soil
properties have a significant impact on crop development.
Figure 7 presents visual observations of the field conditions
near the time of image acquisition, a gray-scale NIR image
of the field, and the vegetation classes derived from
unsupervised classification. Note that the visual
observations were obtained by viewing the field from the
road and represent what the observer considered the
average conditions in that section of the field. The
vegetation classification of fields 33 to 37 shown in
figure 7 can be useful to determine if the soil zones
previously defined appear to impact crop development. For
example, in fields 33 and 34, the vegetation class patterns
roughly match the soil classes previously derived from the
bare soil images (fig. 5). In these fields, areas classified as
low canopy density tend to correspond to areas of higher
sand content. The reduced water holding capacity of sandy
areas and the fact that these fields are given uniform
irrigation applications may help explain the general
agreement in the distribution of these classes.

The agreement between the vegetation and soil classes
is not as clear in fields 35 to 37. In field 37, portions of the
field had been divided into plots by removing plants
between treatments. This altered the apparent plant density
independent of soil type. In fields 35 and 36, different
cotton varieties were grown within the field. The division
in the vegetation classes often corresponds to the division
between different varieties. Thus, this is a good indication

Crop Cover: | 90% 100% [ 95% 95%
Height (cm): | 90 110 110 120
Soil; Wet Wet Wet Wet
Variety: NA NA NA NA
Crop Cover: 80% |90%| S0 90% 90%4 90%4 80%A4

Height (cm): 90 100 [100]90 {90 [90 [80

Soil; Dry |Dry {Dry |Dry | Dry {Dry |Dry
Variety: NA |US0|NA [NA [U90[U90|1U54
Crop Cover: 85% | 85% 90% 90% 90%|95%9 9594

Height (crm): 75 90 j110[110]110(110(110

Soil: Dry |Wet|Wet|Wet| Wet [Wet|Wet
Variety: NA U90|U54|U90| US4 [U0[US0
Crop Cover: 100% 100% 90% S0%
Height (crm): 100 100 %0 90
Soil: Wet Wet Wet Wet
Variety: Pima Pima Pima Pima
Crop Cover: | 100% | 100% | 90% | 90%

; - S0 90 70 90
Hei cm):
Soilgzm (e Wet Wet Dry Dry
Variety: Pima Pima Pima | Pima

(a)

that soil differences were not responsible for these patterns.
Another interfering factor can be the condition of the soil
background. For example, the far-left block of field 35 in
figure 7 was primarily classified as “high” vegetation,
while the adjacent block to the right was classified as
“low” vegetation. However, field observations indicated
that both areas had the same crop cover, but the far-left
block had a lower crop height (fig. 7). The left-most block
also had a dry soil surface, while the soil in the block to the
right was still moist from a recent irrigation. Near infrared
radiation is more strongly absorbed by water than visible,
and part of the spectral response that defines a relative
increase in vegetation is an increase in NIR reflectance.
Thus the wet versus dry soil background can falsely
indicate a decrease in vegetation.

The previous discussion lends support to the idea that
more accurate vegetation classes could be derived after
canopy closure. However, unsupervised classification of
images for the same fields later in the season generally
resulted in a significant reduction in soil classes, including
some believed to be related to soil type. Under complete
crop cover, the sensitivity to canopy density is decreased in
the visible and NIR part of the spectrum. Crop cover
greater than 50% is desirable, so that soil background
conditions in addition to soil moisture do not begin to
dominate the spectral response.

In summary, if soil variation does impact the crop’s
development, the number of vegetation class patterns is
expected to be equal to or greater than the number of soil
classes. There could be more vegetation classes than soil
classes because factors such as management practices,
insect damage, irrigation uniformity, and weed pressure
impact a crop’s growth in addition to soil type. However, if
some soil classes that do not occur in vegetation classes,
the soil class may not need to become a management unit.

B i P vecion i Low

(b) ©

Figure 7-Field observations (a), NIR image (b), and vegetation classes (c) for fields 33 to 37. Field observations are based on a visual assessment
of percent crop cover, crop height, and surface soil moisture near the time of image acquisition. Different varieties of cotton were grown in these
fields: NA indicates information on the specific variety was not available; U90 is Upland (Gossypium hirsutum) Delta Pine 90; U54 is an Upland

Delta Pine 5415 variety; and Pima (G. barbadense).
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If nutrients and water are over-applied to the area;
however, it is possible that the soil type influences could be
masked.

IMPACT OF SOIL SURFACE CONDITIONS ON
MULTISPECTRAL DATA

As differences in soil tillage, moisture, and residue
conditions were found to impact the accuracy of the image
classification results, the hand-held radiometer data
collected were used to quantify the impact of these
differences on surface reflectance. Figure 8 shows the
reflectance measured with the hand-held radiometer for
various soil surface conditions. For this site, a wet soil
surface resulted in a significant decrease in the soil’s
reflectance across all of the bands considered. The presence
of a small amount of crop residue did not have a large
impact on the visible bands; however, it did result in a 5%
difference in the NIR bands (0.810 and 0.830 pm). The
smoother soil surfaces had higher reflectance values than
the bed and surface with soil clods as both the beds and
clods cast shadows over a portion of the surface. The
impact that soil surface conditions can have on the ability
of reflectance data to accurately map soil texture can be
illustrated by comparing tables 7 and 8. Table 7 contains
the range in the reflectance values presented in figure 8.
Table 8 presents the average reflectance determined from
the airborne data over areas of known soil texture. The
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Figure 8-Percent reflectance (or surface temperature for the thermal
band) measured with a hand-held radiometer for different soil
surface conditions. All measurements were taken within a 15-m-
diameter area.

Table 7. Summary statistics for the hand-held radiometer
data presented in figure 8

Center Wavelength (um)
0460 0.559 0.660 0.661 0.710 0.810 0.830 1.650

Statistics Based on All of the Soil Surface Conditions
(range and average have units of percent reflectance)

Range 66 99 144 146 164 152 158 27.1
Average 93 157 258 260 299 317 323 443
Range/Average (%) 70 63 56 56 55 48 49 61

Statistics Based on Dry Soil Surfaces Only
(range and average have units of percent reflectance)

Range 19 3.0 49 51 59 61 62 90
Average 112 183 294 296 339 354 362 505
Range/Average (%) 17 17 17 17 17 17 17 18

Statistic

740

Table 8. Reflectance values from the calibrated airborne
sensor data over different soil types

Center Wavelength (jum)
Surface 0.550 0.650 0.850
Reflectance (%)
Field 33
Sandy loam 21.1 28 36.8
Clay loam 169 20.7 28.7
Difference 42 73 8.1
Field 28
Sandy loam 16.3 234 333
Clay loam 12.6 18.4 25.3
Difference 3.7 5 8

difference in reflectance between dry and wet soil shown in
table 7 is much greater than the difference in reflectance of
soils with very different textures. Even when reflectance
differences due to surface moisture are eliminated,
reflectance differences caused by tillage differences have
the same level of influence on reflectance as those caused
by soil type differences. For example, the range in
reflectance for a wet versus dry surface at 0.660 um is
14%, and 4.9% due to changes in surface roughness under
dry conditions (table 7). At approximately the same
wavelength (0.650 pm), the difference in reflectance of a
sandy loam and clay loam soil is between 5 and 7%
reflectance.

SUMMARY AND CONCLUSIONS

Many factors that can impact a soil’s apparent
reflectance are not related to the soil’s physical properties
such as tillage practices, crop residue, row orientation and
surface moisture. Therefore, the use of multispectral
imagery is best suited for farms with fields that have
uniform tillage and moisture conditions at the time of
image acquisition. The soil property of interest should
exhibit a spectral response. For example, in this study soil
with higher sand content tended to have a higher
reflectance in the visible and NIR portion of the spectrum.
If such conditions are present, unsupervised classification
provides the ability to identify potential soil zones before
soil samples are taken. The number of soil samples needed
to map soil properties with remotely sensed data could then
be significantly reduced when compared to spatial
interpolation techniques. Utilization of quantitative
techniques to classify soil management zones with data
from low flying aircraft is more challenging than using
data from satellites due to the small area that can be
contained in a single frame. Often differences between
image frames result in the need to classify parts of the farm
on a frame-by-frame basis. While this can result in a useful
soil map, it is a labor-intensive process and may increase
the number of soil samples needed for accurate
classification. The use of multi-temporal imagery will
probably require individual classification due to changes in
soil surface conditions between images. One advantage
offered by remotely sensed data is the ability to compare
soil maps to crop density patterns. Such a tool can be a
significant aid in determining if differences in soil texture
warrant modified management practices. However, as with
spectral soil classes, interpretation of the vegetation classes
should take into account factors other than soil type that
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can impact crop development (e.g., crop type and variety,
pest damage, and soil surface moisture).
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